1(a)(i)	(Magnetic) flux linkage	(1)	
	Weber /Wb (accept T m^2)	(1)	
			2
1(a)(ii)	The (induced) <u>e.m.f</u> is such as to <u>oppose the change</u> creating it	(1)	
			1
*1(b)(i)	(QWC – work must be clear and organised in a logical manner using		
	technical terminology where appropriate)		
	There is a changing flux (linkage)		
	Or magnetic field lines are cut by the coil	(1)	
	Inducing an e.m.f .(across the coil)	(1)	
	There is a current since there is a closed circuit	(1)	
			3
1(b)(ii)	The rate of change of flux changes	(1)	
	as speed changes		
	Or because flux density at coil changes with distance		
	(MP2 dependent on MP1)	(1)	
			2
1(b)(iii)	More readings in a short time		
	Or increased sampling rate	(1)	
			1
	Total for question		9

Question	Answer		Mark
Number			
2	Arrow added to diagram downwards on or near the copper rod (An indication that the field is at right angles to the page or copper rod (C	1) 1)	
	Magnetic field into page (1	l)	3
	(Upward arrow for current \rightarrow magnetic field out of page.		
	If no arrow on rod MP2 &3 can still be scored)		
	Total for question		3

Question Number	Answer		Mark
3(a)	The <u>induced e m.f.</u> (1)	
	Is equal/proportional to the rate of change of (magnetic) flux (linkage) Or $\varepsilon = (-) d(N\Phi)/\Delta t$ with symbols defined (1))	2
*3(b)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	the idea that due to the magnet moving there is a changing field around the ring (1)	l
	An e.m f. induced (in a closed circuit hence a current flows) (1)	l
	Change in direction of magnet, changes the direction of e.m.f./current (1)	l
	Magnitude of e.m f. (and current) depends on the rate of change of flux linkage Or magnitude of e m.f. (and current) depends on position/ speed of magnet (1)	4
3(c)	Use of area $A = \pi r^2$ (1 Use of $\varepsilon = BA/t$ (1) Use of $\varepsilon = BA/t$ (1) Use of $I = V/R$ (1) I = 4.1 A (1) (accept 4.1 – 4.2 A depending on where rounding is done) (candidates who use a circumference instead of an area can only score MP3) $\frac{\text{Example of calculation}}{\text{Area of coil} = \pi \times (0.05 \text{ m})^2 = 7.9 \times 10^{-3} \text{ m}^2}$ $\varepsilon = BA/t = 0.035 \text{ T s}^{-1} \times 7.9 \times 10^{-3} \text{ m}^2 = 2.8 \times 10^{-4} \text{ V}$ $I = \varepsilon/R = 2.8 \times 10^{-4} \text{ V} / 6.7 \times 10^{-5} \Omega$ I = 4.1 A)))))	4
	Total for question		10

Question Number	Answer					Mark
4(a)(i)	Max 2Inconsistent number of significant figures or decimal placesOr results recorded to different precision /resolutionNo repeat readingsMore readings needed up to 1.5 cm(1)					2
4(a)(ii)(1)	1) Attempt to use Vr = constant (1) Correctly finds two values of Vr from values in table and makes comment				(1)	
	Or uses Vr value with another r or V to confirm corresponding valueand makes comment					
	Example of c	alculation				
	r/cm	V/V	<i>rV/</i> cmV			
	1.0	0.725	0.725			
	1.5	0.483	0.725			
	2.0	0.363	0.726			
	2.5	0.29	0.725			
	3.0	0.242	0.726			
	3.5	0.21	0.735			
4(a)(ii)(2)	The graph we (accept a sket	ould be a st tch of a stra	raight line gra aight line grap	aph through the origin. oh going through the origin graph)	(1)	1
4(b)(i)	An e.m.f. is (induced) w	hen there is a	changing (magnetic) field/flux.	(1)	
	Because the <u>current</u> is constant there is a constant magnetic field. Or Because the <u>current</u> is constant there isn't a changing					2
	magnetic fiel	d.			(1)	Z
4(b)(ii)	Movement of either the coil or the wire (1) Use an alternating current/signal/supply/AC (1) Switch the current on off On alternate current of unrights					
	resistor (1)					3
	Total for que	estion				10

Question	Answer	Mark
Number		
*5(a	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)	
	A clear statement that an alternating/changing current produces an alternating/changing <u>magnetic</u> field/flux (1)	
	Reference to the iron core becomes magnetised Or increases magnetic field (1)	
	the idea that the field produced in the core/wire is linked to the (1) coil	
	(e.m.f. produced) due to EM induction Or reference to induced (1) e.m.f. Or Faraday's law in words (do not accept induced current/voltage on its own)	4
	[be careful not to credit the random use of words/phrases like, there is flux linkage, flux cutting takes place or the field lines are cut by the coil. Also watch out for candidates who think there is a current in the coil creating the flux linkage]	
5(b)	(Constant current means) no change of flux (linkage) Or no (1) changing (magnetic) field Or flux/ field is constant [do not credit 'flux won't be changing direction' or 'no flux linkage being cut' or alternating]	
5(c)	More than one wire in cable (1) Cable carries current in both directions Or Magnetic fields	
	will cancel (1)	2
5(d)(i)	The larger the current the greater the (magnetic) flux/field (produced) Or the larger the change in current the larger the change in the (magnetic) flux/field (1)	
	gives a greater rate of change of flux Or bigger change in flux in the same time Or a greater (induced) e.m.f./voltage/reading (1)	2
5(d)(ii)	the idea that frequency changes the value of (induced)e.m.f/voltage/reading Or the idea that the frequency changes(1)the rate of change of (magnetic)flux	
	An understanding that there are now two factors (current and (1) frequency) altering (induced) e.m.f/voltage/reading.	2
	Total for question	11

Question Number	Answer		Mark
6(a)(i)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate		
	there is a magnetic field in stator/(iron) core Or the core becomes an electromagnet	(1)	
	This field/flux is changing (due to the AC input)	(1)	
	<i>B</i> field (from the stator) passes through the rotor	(1)	
	(the changing magnetic flux/field leads to an) induced emf/pd	(1)	4
6(a(ii)	Rotor experiences a <u>force</u> Or mention of FLHR Or $F = Bll$	(1)	
	magnet	(1)	2
6(a)(iii)	Max 2	(1)	
	Increase (magnitude of) current	(1) (1)	
	Add more turns (to either coil)	(1)	2
6(b)(i)	$T = 60/33(1,82 \text{ s})$ Or $f = 33/60 (0.55 \text{ s}^{-1})$ Use of $\omega = 2\pi/T$ Or $w = 2\pi/f$	(1)	
	$\omega = 3.5 \text{ rad s}^{-1}$	(1)	3
	[11.4 rad s ⁻¹ scores 1; 3.2 x 10 ⁻³ rad s ⁻¹ scores 1; 11 $\pi/10$ rad s ⁻¹ scores 2]		
	Example of calculation		
	$\omega = (33 \times 2\pi)/60 \text{ s}$ $\omega = 3.5 \text{ rad s}^{-1}$		
6(b)(ii)	Use of $a = r\omega^2$ $a = 1.5 \text{ ms}^{-2}$ [allow coff from (b)(i)]	(1)	2
	$\begin{bmatrix} a - 1.5 \text{ ms} & [anow eet nom (b)(1)] \\ [11.4 \text{ rad s}^{-1} \text{ gives } 16 \text{ m s}^{-2}] \end{bmatrix}$	(1)	2
	Example of calculation		
	$a = (0.125 \text{ m}) \times (3.5 \text{ rad s}^{-1})^2$ $a = 1.5 \text{ m s}^{-2}$		
	Total for question		13

Question	Answer	Mark
Number		
7 (a)	(Magnetic) Flux	(1)
	linkage	(1)
7 (b)	QWC (i and iii) - spelling of technical terms must be correct and the	
	answer must be organised in a logical sequence	
	Lenz's law / conservation of energy	(1)
	induced current/emf (direction)	(1)
	Opposes the <u>change</u> (that produced it)	(1)
	Total for question	5